Knowledge Center
Poster / Dec 07, 2016
Impact of Spray Drying on Superoxide Dismutase Activity in Composite Systems with Optimal Aerodynamic Performance for Dry Powder Inhalers
Source:
DDL 2016
Inhaled biopharmaceutical formulations are increasingly attractive to treat not only a wide range of respiratory but also systemic diseases given:
- The lungs large surface area available for drug absorption and the avoidance of first-pass metabolism;
- Biopharmaceuticals (BP) higher specificity, lower toxicity and more predictable in vivo action over small molecules
However,
Efficient delivery of biopharmaceuticals to the lungs still presents a challenge:
- The generation of a stable aerosol with adequate aerodynamic properties while preserving the biopharmaceutical (BP) integrity.
Thus,
Particle engineering technology employed to meet this balance plays a pivotal role – Spray Drying (SD) emerges as a viable candidate:
- From an inhalation standpoint: Relative simplicity, cost effectiveness and scalability with increased control over key aerosol features;
- From a biopharmaceutical standpoint: Mild temperature exposure, commercial availability of miniaturized SD set-ups
Goal: Spray Drying assessment as a suitable particle engineering technology for the production of composite inhalable powders featuring a model biopharmaceutical
Also in the Knowledge Center
/ Dec 07, 2016
Optimization of Supercritical CO2 Assisted Spray Drying for the Production of Inhalable Composite Particles
Read more
Scientific Article
/ Dec 07, 2016
Breathing Simulators: One step closer to representative deposition profiles?
Read more
Scientific Article
/ Dec 07, 2016
Paddle over disk as a dissolution test for orally inhaled drugs: discriminating composite from carrier-based formulations
Read more
Scientific Article