Knowledge Center
Nasal-PAMPA: A novel non-cell-based high throughput screening assay for prediction of nasal drug permeability
Abstract
In nasal drug product development, screening studies are vital to select promising compounds or formulations. The Parallel Artificial Membrane Permeability Assay (PAMPA), a high throughput screening tool, has been applied to evaluate drug permeability across several barriers such as the skin or blood–brain barrier. Herein, a new nasal-PAMPA model was optimized to predict nasal permeability, using a biorelevant donor medium containing mucin. The apparent permeability (Papp) of 15 reference compounds was assessed in six different experimental conditions, and the most discriminating and predictive model was applied to a test drug (piroxicam) and mucoadhesive powder formulations loading the same drug. The model with 0.5% (w/v) mucin in the donor compartment and 2% (w/v) phosphatidylcholine in the lipid membrane accurately distinguished high and low permeable compounds. Additionally, it exhibited the highest correlation with permeation across human nasal epithelial cells, RPMI 2650 (R2 = 0.93). When applied to powder formulations, this model was sensitive to the presence of mucoadhesive excipients and the drug solid state.
Overall, the nasal-PAMPA model was more rapid than cell-based assays, without requiring specialized training or equipment, showing to be a promising in vitro tool that can be applied in drug and formulation screening for nasal delivery.